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1   |   INTRODUCTION

The circadian rhythm regulates lung functions, includ-
ing upper and lower airway capacity, respiratory vol-
umes, mucus production alveolar capillary flow, and 
inflammatory cell flux in physiological conditions. 

Diurnal variation of the clinical signs, symptoms, 
and exacerbations also occurs in pulmonary diseases 
(Sundar, Yao, et al., 2015a). Physiological activity of lung 
function has a diurnal variation with the low value in 
the early morning and the upper value at noon. Usually 
worsening of respiratory symptoms occurs in patients 
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Abstract
The circadian rhythm system regulates lung function as well as local and systemic 
inflammations. The alteration of this rhythm might be induced by a change in 
the eating rhythm. Peroxisome proliferator-activated receptor gamma (PPARG) 
is a key molecule involved in circadian rhythm regulation, lung functions, and 
metabolic processes. We described the effect of the PPARG agonist pioglitazone 
(PZ) on the diurnal mRNA expression profile of core circadian clock genes (Arntl, 
Clock, Nr1d1, Cry1, Cry2, Per1, and Per2) and metabolism- and inflammation-
related genes (Nfe2l2, Pparg, Rela, and Cxcl5) in the male murine lung disrupted 
by reversed feeding (RF). In mice, RF disrupted the diurnal expression pattern of 
core clock genes. It decreased Nfe2l2 and Pparg and increased Rela and Cxcl5 ex-
pression in lung tissue. There were elevated levels of IL-6, TNF-alpha, total cells, 
macrophages, and lymphocyte counts in bronchoalveolar lavage (BAL) with a 
significant increase in vascular congestion and cellular infiltrates in male mouse 
lung tissue. Administration of PZ regained the diurnal clock gene expression, 
increased Nfe2l2 and Pparg expression, and reduced Rela, Cxcl5 expression and 
IL-6, TNF-alpha, and cellularity in BAL. PZ administration at 7 p.m. was more 
efficient than at 7 a.m.
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with asthma or chronic bronchitis during the early 
morning (Barnes,  1985). Circadian expression of core 
clock genes described for lung tissues and its disorders 
influenced respiratory functions and all types of respi-
ratory and inflammatory cells (Evans & Davidson, 2013; 
Gibbs et al., 2014; Pekovic-Vaughan et al., 2014; Sundar, 
Ahmad, et al., 2015b). Despite our recent knowledge of 
how the lung circadian system influences lung phys-
iology and pathophysiology, we need the development 
of new treatments for pulmonary diseases using in-
struments of chronobiology and chronopharmacology 
(Sundar, Yao, et al., 2015a).

Nutrients have a strong impact on circadian rhythm, 
influence metabolic processes in various cells and tissues, 
and affect the molecular clock gene expression (Ooster-
man et al.,  2015). The alteration of the peripheral clock 
genes' rhythm might be induced by the changing of the 
eating rhythm. Night- and evening-time eating had a del-
eterious impact on inflammatory markers, and provoked 
low-grade systemic inflammation, high blood pressure, 
sleeping disorders, glucose intolerance, and weight gain 
(Carithers-Thomas et al.,  2010; Marinac et al.,  2015;  
Mundula et al., 2022; Scheer et al., 2009).

The clock gene rhythm, low-grade inflammation, 
immune response, and metabolism are closely related 
through the number of transcriptional factors and cel-
lular pathways (Cox et al., 2022; Fagiani et al., 2022; Li, 
Liu, Meng, et al., 2022; Ray, 2022; Shirato & Sato, 2022). 
These include peroxisome proliferator-activated recep-
tor gamma (PPARG) and PPARG coactivator 1 alpha 
(PGC-1 alpha) (Fedchenko et al., 2022; Hara et al., 2001; 
Vallée et al.,  2019). PPARG is a key regulator of fetal 
lung maturation (Lee et al., 2020), lung immunity (Nobs 
& Kopf,  2018), fibrosis (Deng et al.,  2012), vasculature 
(Hart, 2008), and metabolism (Kökény et al., 2021), etc. 
PPARG is a promising target in lung pathologies such 
as chronic airway inflammation (Belvisi et al.,  2006), 
asthma and COPD (Al Sharif, 2021; Byelan et al., 2017; 
Rogliani et al.,  2018; Tseng,  2022), pulmonary vascu-
lar disease (Afdal & AbdelMassih,  2018), pulmonary 
artery hypertension (Hansmann et al.,  2020), fibrosis 
(Milam et al.,  2008), and cancer (Li et al.,  2006). Acti-
vation of PPARG is a possible tool for the realization of 
pleiotropic effects. Such influence might be maintained 
by 2,4-thiazolidinediones (glitazone) and its derivate 
with a plethora of pharmacological activities (Kajal 
et al., 2022).

One of the most investigated PPARG agonists is piogli-
tazone (PZ). PZ increased PPARG expression and inhibits 
local and systemic inflammation during acute lung injury 
(Editorial Office,  2022). PZ attenuates a dysfunction of 
alveolar macrophages (Yeligar et al.,  2021), ameliorates 
COPD-induced endothelial dysfunction (Abdelhafez 

et al., 2021), prevents obesity-related airway hyperreactiv-
ity (Proskocil et al., 2021), decreases airway remodeling in 
OVA-induced inflammation (Meng et al.,  2018), and re-
verses pulmonary hypertension (Legchenko et al., 2018).

The study assessed the effects of reversed feeding (RF) 
and PZ on the expression of the core clock, inflammatory 
and metabolic genes in the male murine lung.

2   |   MATERIALS AND METHODS

2.1  |  Animals

We placed male BALB/c mice in single cages to avoid 
aggression and kept them following a light–dark cycle 
of a 12:12 pattern (lights on at 7 a.m.; lights off at 7 p.m.). 
From 4 weeks of age, the mice were housed individu-
ally, with unlimited access to food and water. The Ethics 
Committee of Poltava State Medical University approved 
the study. At 8 weeks of age, the mice were randomly 
divided into daytime feeding (RF) and nighttime feed-
ing (NF) groups, with water provided ad libitum. Nor-
mally, the mice have increased activity and feed in the 
dark period. Thus, the daytime feeding is called reversed 
or inverted feeding. The RF group received food from 
7 a.m. to 7 p.m., whereas the NF group received food 
from 7 p.m. to 7 a.m. (Xin et al., 2021). PZ was adminis-
tered orally as an aqueous suspension of 40 μL at a dose 
of 20 mg/kg, either at 7 a.m. or 7 p.m., as previously de-
scribed (Fedchenko et al.,  2022). Each group consisted 
of 12 animals, and all manipulations during the dark 
phase were conducted under red light. The study design 
is shown in Figure 1.

On the eighth day of the feeding intervention, mice were 
euthanized by means of cervical dislocation at two different 
time points—noon (5 h after light onset or HALO 05) and 
midnight (HALO 17). The lungs were extracted, promptly fro-
zen, and preserved at a temperature of −80°C for future use.

2.2  |  RNA preparation and quantitative 
reverse transcription PCR

For RNA extraction, lung tissue samples were collected 
from six mice at each time point. The RNeasy kit (QIAGEN),  
Cat. No. 74104, was used to extract total RNA from the 
lung tissue.

We generated single-strand DNAs by reverse transcrib-
ing approximately 1 μg of total RNA from each sample using 
the QuantiTect® Reverse Transcription Kit (QIAGEN),  
Cat. No. 205313.

For SYBR Green-based analysis, the QuantiTect® SYBR 
Green PCR Kit (QIAGEN), Cat. No. 204143, was used to 



      |  3 of 20SHLYKOVA et al.

amplify the cDNA equivalent of 50 ng of total RNA from 
each sample in the CFX96TM RealTime PCR Detection 
System (BIO-RAD).

Data accuracy was ensured by analyzing each sample 
in duplicate. The gene expressions were detected as 2−ΔCt, 
and all values were normalized to the expression of the 
housekeeping gene β-actin, which had weak circadian 
variation in the lung (Matsumura et al., 2014).

The specific primer sequences used for real-time PCR 
are shown in Table  1. All the oligonucleotides were ob-
tained from Metabion International AG (Germany).

2.3  |  Bronchoalveolar lavage (BAL)

On Day 8, mice were anesthetized using diethyl ether. The 
lungs were lavaged three times with 0.6 mL of 0.9% sodium 

chloride via the insertion of a tracheal tube (Mortola & Seif-
ert, 2002). The lavage fluid was collected and centrifuged, 
and the supernatant was frozen at −80°C for subsequent 
cytokine analysis. The cells obtained from the BAL were 
resuspended in 1 mL of 0.9% sodium chloride solution, and 
the total cell count was determined using a count chamber. 
Glass slides were prepared and stained with Romanowsky-
Giemsa stain for performing differential cell counts.

2.4  |  BAL cytokines assay

We measured the concentration of interleukin-6 (Cat. No. 
M600B), TNF-alpha (Cat. No. MTA00B), and TGF-beta 1 
(Cat. No. DY1679) in the BAL fluid using kits from R&D 
Systems (Minneapolis MN). The absorbance was deter-
mined by LabLine-026 (Labline).

F I G U R E  1   Experimental flowchart. Sun ☼ and Moon  pictograms indicate the light and dark periods, respectively. Experimental 
schedule from Day 0 to Day 8: (a) mice entrained to a 12-h light–dark cycle with ad libitum access to food and water. (b) Mice in RF 
groups. (c) Mice in NF groups. (d) Mice were sacrificed on Day 8 at noon (HALO 05) and midnight (HALO 17), and lung specimens and 
BAL samples were collected. Sacrifice for histopathological analysis was performed at HALO 05. White arrows indicate the time of PZ 
administration. HALO, hour after light onset.
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2.5  |  Histological analysis

To perform histological analysis, the left lobe of each ani-
mal's lung was removed and inflated with 10% formalin after 
sacrifice. Paraffin-embedded lung tissue 3 μm sections were 
stained with Hematoxylin and Eosin (H&E; Abcam, Cat. 
No. ab245880) for examination by histopathology. Morpho-
logical analyses were carried out using a light microscope 
Axio Lab.A1 (Carl Zeiss) and Zen 2.5 lite (blue edition) soft-
ware. A blinded pathologist reviewed all lung sections using 
a special scoring system (Murakami et al., 2002).

To detect airway mucus, we used the periodic acid—
Schiff (PAS) staining technique (Abcam, Cat. No. ab150680) 
and quantified PAS-positive cells through a semiquantitative 
approach (Sundar, Ahmad, et al., 2015b; Yao et al., 2008).

We also conducted Mallory's trichrome staining 
(Abcam, Cat. No. 150686) and used the Ashcroft scor-
ing system was used for fibrosis quantification (Ashcroft 
et al., 1988).

2.6  |  Statistical analysis

Descriptive statistics (M ± SD) was applied for the analy-
sis of data using GraphPad Prism 5.0 software (San Diego, 

USA). The two-way ANOVA and post hoc Bonferroni tests 
were employed to compare gene expression and cytokines 
concentration. The one-way ANOVA test with post hoc 
tests and 2 × 2 table statistics, including Fisher's exact test, 
were used to analyze histopathological data and compare 
proportions. p-values of <0.05 were considered statisti-
cally significant.

The study relied on the null hypothesis that RF, PZ, 
and the time of its administration did not influence the 
expression of clock, inflammatory, and metabolic genes in 
mouse lungs.

3   |   RESULTS

3.1  |  Changes in Per1, Per2, Cry1, Cry2, 
Clock, Arntl, and Nr1d1 mRNA after RF 
and PZ treatment in the mouse lungs

The levels of core clock genes' mRNAs during NF and 
after RF and PZ administration are shown in Figure  2. 
We observed statistically significant elevation of Per1, 
Per2, Cry1, Cry2, Clock, and Arntl mRNA at midnight 
than at noon in the lung tissues of NF mice. The level of 
Nr1d1 mRNA was increased at noon. The core clock gene 

T A B L E  1   Primer sequences for mRNA measurement.

Gene Primer sequences References ID number

Arntl Forward ACATA​GGA​CAC​CTC​GCAGAA
Reverse AACCA​TCG​ACT​TCG​TAGCGT

(Liu et al., 2007) 211116B056A01
211116B056B01

Clock Forward CCTAT​CCT​ACC​TTC​GCC​ACACA
Reverse TCCCG​TGG​AGC​AAC​CTAGAT

211116B056C01
211116B056D01

Nr1d1 Forward CGTTC​GCA​TCA​ATC​GCAACC
Reverse GATGT​GGA​GTA​GGT​GAGGTC

211116B056A03
211116B056B03

Cry1 Forward TTGCC​TGT​TTC​CTG​ACTCGT
Reverse GACAG​CCA​CAT​CCA​ACTTCC

211116B056C03
211116B056D03

Cry2 Forward TCGGC​TCA​ACA​TTG​AACGAA
Reverse GGGCC​ACT​GGA​TAG​TGCTCT

211116B056E03
211116B056F03

Per1 Forward CATGA​CTG​CAC​TTC​GGGAGC
Reverse CTTGA​CAC​AGG​CCA​GAG​CGTA

211116B056G03
211116B056H03

Per2 Forward GGCTT​CAC​CAT​GCC​TGTTGT
Reverse GGAGT​TAT​TTC​GGA​GGC​AAGTGT

211116B056A04
211116B056B04

Nfe2l2 Forward CGCCG​CCT​CAC​CTC​TGC​TGC​CAGTAG
Reverse AGCTC​ATA​ATC​CTT​CTGTCG

(Ghosh et al., 2017) 211116B056C05
211116B056D05

Pparg Forward CCAGA​GCA​TGG​TGC​CTT​CGCT
Reverse CAGCA​ACC​ATT​GGG​TCA​GCTC

(Illesca et al., 2019) 211116B056G04
211116B056H04

Rela Forward GAGGT​CTC​TGG​GGG​TACCAT
Reverse AAGGC​TGC​CTG​GAT​CACTTC

211116B056A05
211116B056B05

Cxcl5 Forward TGCCC​TAC​GGT​GGA​AGTCAT
Reverse AGCTT​TCT​TTT​TGT​CAC​TGCCC

(Smith et al., 2017) 211116B056E05
211116B056F05

β-actin Forward ACTGC​CGC​ATC​CTC​TTCCTC
Reverse CTCCT​GCT​TGC​TGA​TCC​ACATC

(Illesca et al., 2019) 211116B056E01
211116B056A02
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F I G U R E  2   Diurnal changes in clock 
gene mRNA in mouse lung. Expression 
of mRNA: (a) Per1; (b) Per2; (c) Cry1; 
(d) Cry2; (e) Clock; (f) Arntl; and (g) 
Nr1d1. Horizontal lines show significant 
differences. Y-axis—relative mRNA levels.

(a) (e)

(f)

(g)

(b)

(c)

(d)
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expression did not change after the oral intake of PZ at 
7 a.m. At midnight, Per1 mRNA was increased after PZ 
administration at 7 p.m. (p < 0.001).

RF influenced the core clock genes’ expression profile. 
Per1, Per2, Clock, and Arntl mRNA were decreased at mid-
night and increased at noon. At midnight, Cry1 and Cry2 
mRNA were decreased in comparison with NF (p < 0.001). 
Also, we observed an increased Nr1d1 mRNA at mid-
night with a decrease at noon (p < 0.001). There were no 
changes in core clock genes’ expressions after PZ at 7 a.m., 
excluding a slight decrease in Clock mRNA at noon. The 
treatment with PZ at 7 p.m. led to increased Per1, Per2, 
Cry1, Cry2, and Arntl mRNA at midnight. We also found 
PZ treatment at 7 p.m. reduced Per1, Per2, Cry1, Clock, and 
Arntl mRNA as well as induced Nr1d1 mRNA at noon. 
Taken together, these findings reflect a normalization of 
the core clock mRNA profile under the influence of PZ 
treatment at 7 p.m.

3.2  |  Changes in Nfe2l2, Pparg, Rela, and 
Cxcl5 mRNA after RF and PZ treatment 
in the lungs of mice

During NF, we found the increased levels of Nfe2l2, Pparg, 
and Cxcl5 at midnight in comparison with noon expres-
sion. In contrast, Rela mRNA was significantly reduced at 
midnight (p < .01; Figure 3).

In RF mice, we observed the reversed profile of Nfe2l2 
gene expression with the prevalence of noon expression 
over midnight expression. In general, the feeding interven-
tion led to a decrease in Nfe2l2 expression. We also found 
the loss of diurnal variation in Pparg expression in these 
animals. In turn, Rela and Cxcl5 mRNAs were reduced at 
midnight and noon compared with NF mice. The level of 
Pparg mRNA had a statistically significant reduction at 
midnight. PZ treatment of NF mice at 7 a.m. caused an in-
crease in Pparg mRNA and a decrease in Cxcl5 mRNA at 
midnight.

PZ administration at 7 a.m. to nighttime feeding mice 
increased Pparg and decreased Cxcl5 expression at mid-
night expression. On the contrary, PZ treatment at 7 p.m. 
elevated Nfe2l2 expression at noon and Pparg—at mid-
night, as well as decreased Rela expression at midnight 
and noon. We also observed a decrease in Cxcl5 mRNA 
at midnight. There were no statistically significant dif-
ferences in mRNAs concentrations after PZ treatment at 
7 a.m. in RF mice. Administration of PZ at 7 p.m. induced 
midnight expression of Nfe2l2 and decreased noon expres-
sion, as well as increasing midnight and noon expression 
of Pparg. PZ treatment at 7 p.m. decreased Rela and Cxcl5 
mRNA at midnight and noon.

3.3  |  Changes in inflammatory cell influx 
in BAL fluid after RF and treatment

We observed the prevalence of total cells and neutro-
phil count in NF mice at midnight. PZ treatment at 
7 a.m. reduced neutrophil count at midnight, and mac-
rophages—at noon as well as increased neutrophil count 
at noon. PZ treatment at 7 p.m. elevated macrophages and 
neutrophil count at midnight as well as neutrophils at 
noon. RF led to the elevation of total cells, macrophages, 
and lymphocyte count at midnight, accompanied by the 
reduction in neutrophil count at midnight and noon.

PZ treatment at 7 a.m. reduced lymphocyte count at 
midnight and neutrophil count at noon. We also found PZ 
intake at 7 p.m. statistically significantly decreased total 
cells, macrophages, and lymphocyte count and increased 
neutrophil count at midnight, as well as decreased total 
cells and neutrophil count at noon (Figure 4).

3.4  |  Changes in cytokine release in BAL 
fluid after RF and PZ treatment

At nighttime, there was a significant diurnal variation of 
BAL cytokines concentration with the pro-inflammatory 
IL-6 and TNF-alpha prevalence at noon and an increased 
concentration of anti-inflammatory TGF-beta 1 at mid-
night (Figure 5).

There were significant changes in cytokines concen-
trations in BAL: a significant increase in IL-6, TNF-alpha, 
and TGF-beta 1 at all time points.

PZ administration at 7 a.m. to nighttime feeding mice 
decreased a level of TGF-beta 1 at midnight and IL-6 at 
noon. In RF mice, there was a reduction in IL-6, TNF-
alpha, and TGF-beta at midnight, and TNF-alpha at noon.

PZ treatment at 7 p.m. increased the level of IL-6 at 
midnight and decreased at noon compared with untreated 
animals. PZ intake at 7 p.m. reduced TNF-alpha concen-
tration at noon in comparison with PZ treatment at 7 a.m. 
and decreased at midnight and noon compared with un-
treated animals. A statistically significant reduction in 
TGF-beta 1 concentration at midnight in comparison with 
animals treated with PZ at 7 a.m. as well as with untreated 
mice. In RF mice, PZ administration led to a decrease in 
IL-6 concentration at noon compared with animals treated 
by PZ at 7 a.m. as well as to the decrease at all time points 
compared with the untreated mice. Administration of 
PZ at 7 p.m. reduced the TNF-alpha and TGF-beta 1 con-
centration at all time points in comparison with animals 
treated by PZ at 7 a.m. and untreated mice (with an excep-
tion for TNF-alpha at noon in comparison with morning 
administration of PZ).
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3.5  |  The changes in mouse lung 
morphology after RF and PZ treatment

In RF-untreated animals, we found a significant eleva-
tion of vascular congestion and interstitial cellular in-
filtrates (Figure  6a). PZ intake at 7 a.m. and at 7 p.m. 

reduced levels of vascular congestion and cell infiltration 
but did not reach statistical significance (Figure  6b–g). 
In RF-untreated animals, some mucus overproduction 
was observed in the bronchial epithelium (Figure 6h). PZ 
treatment at 7 a.m. reduced mucus production but did not 
reach statistical significance (Figure 6i,l). PZ treatment at 

F I G U R E  3   Circadian changes in mRNA transcription of inflammation-/metabolism-related genes in the lungs of mice. Expression of 
mRNA: (a) Nfe2l2; (b) Pparg; (c) Rela; and (d) Cxcl5. Significant differences are shown by the horizontal line. Y-axis—relative mRNA levels.

(a) (c)

(d)

(b)
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7 p.m. elevated mucus production, whose mean level sta-
tistically prevailed over control groups (Figure 6j,l). There 
were no statistically significant collagen depositions in 
lung tissue in all experimental or control groups (data not 
shown).

4   |   DISCUSSION

The circadian rhythm is an essential regulatory mecha-
nism orchestrating physiological processes and cellular 

metabolism in living organisms. This mechanism is based 
on complicated molecular factors driven by extrinsic and 
intrinsic stimuli (Bass & Takahashi,  2010). In the body, 
there is a strong hierarchy of the circadian rhythm from the 
suprachiasmatic nucleus to the tissue/cellular oscillators. 
These oscillators rely on the transcriptional and transla-
tional feedbacks regulating the core clock and related genes  
(Takahashi, 2017). The genetic control of circadian rhythms 
is provided by the core clock genes consisting of Clock, 
Npas 2, Arntl, Per1/Per2, Cry1/Cry2, and Nr1d1/2), and 
Nr1/2/3. The protein products of these genes take part in the 

F I G U R E  4   Influence of RF and PZ treatment on inflammatory cell influx in mouse BAL: (a) total cells; (b) macrophages; (c) 
lymphocytes; and (d) neutrophils.

(a)

(b)

(c)

(d)
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regulation of more than 80% of genes expressed throughout 
the body (Mure et al., 2018; Zhang, Lahens, et al., 2014).

While environmental light and dark changes are the 
main conventional input for the circadian rhythm regu-
lation, other lifestyle factors also influence it. These fac-
tors include food consumption, night- and evening-time 

eating, exercise, temperature, and stress (Güldür & 
Otlu, 2017; Panda et al., 2002). A changed time of eating 
(such as the shifting of food consumption to evening or 
night) is associated with sleeping disorders, weight gain, 
and physical activity reduction in a healthy person (Yahia 
et al.,  2017). The evening chronotype is also associated 

F I G U R E  5   Changes in mouse BAL cytokines levels after RF and PZ treatment: (a) IL-6; (b) TNF-alpha; (c) TGF-beta 1.

(a) (b)

(c)
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with increased sleep apnea (Lucassen et al., 2013). Night 
eating syndrome was described in patients suffering from 
being overweight. This is a type of eating disorder related 
to eating after dinner and being awake at night (Salman & 
Kabir, 2022). At the same time, the obese patients had long 
morning fasting (O'Connor et al., 2022).

Patients with metabolic syndrome and type 2 diabetes 
had a high cardio-metabolic risk and nighttime eating pat-
terns. Moreover, nighttime work and other lifestyle disor-
ders might induce glucose intolerance and diabetes (Ha & 
Song, 2019; Quist et al., 2021; Shan et al., 2018).

In previous studies, it has been shown that an imbal-
ance in the circadian rhythm led to immune disorders and 
allergy promotion due to different pathways, including ep-
ithelial dysfunction (Nakao, 2020). Circadian disruption is 

involved in various pathologies: gluco- and mineralocorti-
coids nighttime hypertension; shift work intolerance; pep-
tic ulcer disease; kidney failure; nocturia; asthma; cancer; 
hand, foot, and mouth diseases and ICU outcome (Smo-
lensky et al., 2016).

Recently chronobiological aspects of chronic airway 
diseases have been under active investigation. The distur-
bance of the circadian rhythm might affect lung cellular 
and molecular physiology (Sundar, Yao, et al.,  2015c). 
The worsening of asthma and COPD clinical symptoms 
(cough, shortness of breathing, decrease in respiratory 
volumes, increased mucus production and sleeping disor-
ders), and changed therapeutic efficacy to bronchodilators 
and steroids are observed at nighttime (Agusti et al., 2011; 
Casale & Pasqualetti,  1997; Chinnapaiyan et al.,  2020; 

F I G U R E  6   Lung tissue changes and histopathological scores after RF and PZ treatment (H&E). Scale bars 50 μm. (a) Vascular 
congestion (asterisks) and cellular infiltrates (white arrows) in RF untreated mice; (b) marked cellular infiltrates (black arrows) in RF PZ 
7 a.m. mice; (c) absent of visual changes in vascular congestion in RF PZ 7 p.m. mice; (d) nighttime feeding PZ 7 p.m. and (e) control groups 
demonstrate similar minimal levels of vascular congestion and cellular infiltrations of lung interstitium; (f) Comparisons of mean scores of 
vascular congestion and (g) cellular infiltrates: P-value calculated by Kruskal–Wallis and Dunn's post hoc test; (h) mucus overproduction 
mice (PAS staining) in the bronchial epithelium of RF untreated; (i) PAS reactivity in bronchial cast after PZ intake at 7 a.m.; (j) mucus 
overproduction in bronchial epithelium of RF PZ 7 p.m. mice; (k) PAS reactivity mostly absent in goblet cells of control mice; and (l) 
comparisons of mean mucus scores: P-value calculated by Kruskal–Wallis and Dunn's post hoc test.
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Gebel et al.,  2006; Sundar et al.,  2018; Tsai et al.,  2007; 
Yao & Rahman,  2011). Lung viral infections remodel 
pulmonary clock functions in COPD and asthma (Ehlers 
et al., 2018; Sundar, Ahmad, et al., 2015b).

There are no recent sufficient data on how late-evening 
and nighttime eating influence physiological functions 
and the molecular clock in the lung. RF might be an 

effective rodent model for the investigation of the time-
of-day eating variations. This experimental model breaks 
the peripheral molecular clock in the mouse heart, liver, 
and kidney (Fedchenko et al., 2022; Izmailova et al., 2022; 
Oyama et al., 2014; Yamamura et al., 2010).

We demonstrated that the RF led to different expres-
sion patterns with decreased levels of Per1, Per2, Clock, 
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and Arntl mRNA at midnight and an increase at noon. At 
midnight, there was the level of Cry1 and Cry2 mRNAs 
was decreased in the lungs of RF mice. Nr1d1 mRNA was 
increased at midnight and decreased at noon. These data 
showed that RF reprogrammed the peripheral lung clock. 
Our observation correlated with other references that the 
time of food consumption was a powerful factor affecting 
the circadian rhythm in metabolically active organs and 
tissues (Bilu et al., 2022; Glad et al., 2011; Kim et al., 2023; 
Pickel & Sung, 2020; Woodie et al., 2022). For lung circa-
dian molecular clock gene expression, such influence was 
described for tobacco smoking (Choukrallah et al., 2020; 
Khan et al.,  2019; Numaguchi et al.,  2016). In this con-
text, we have highlighted the suppression of Nr1d1 expres-
sion that might be parallel with increased inflammation 
and inflammation-related cytokines concentrations  
(Lechasseur et al., 2017).

Simultaneously, we investigated the expression of 
several inflammation- (Rela and Cxcl5) and metabolism-
related genes (Nfe2l2, Pparg). The RF reversed the pro-
file of Nfe2l2 gene expression with the prevalence of 
noon expression over midnight expression accompanied 
by the loss of diurnal variation in Pparg expression. The 
transcriptional factor NRF2 contributed to the regula-
tion of lung inflammation (Kobayashi et al.,  2013; Qin 
et al., 2015) and fibrosis (Wang et al., 2022). NRF2 might 
procure the scavenge of apoptotic neutrophils by alveolar 
macrophages (Reddy et al., 2022), regulate free radical ox-
idation, possess antioxidant activity protecting cells and 
subcellular compartments, and eliminate reactive oxygen 
species (Kovac et al., 2015).

Nfe2l2 knockout promotes lung inflammation and in-
jury (Cho et al.,  2004; Reddy et al.,  2009) and increases 
the levels of inflammatory cells in BAL after pollutant 
lung damage (Sehsah et al., 2019). NRF2 increases PGC-1 
alpha deacetylation and alleviates chromium-induced 
lung damage (Han et al., 2019). On the contrary, activated 
PGC-1 alpha cooperates with a variety of transcriptional 
factors, including NRF2 and PPARs (Baar,  2004; Bost & 
Kaminski, 2019; Chambers & Wingert, 2020).

PPARG realizes anti-inflammatory and antioxida-
tive actions, inducing Nfe2l2 expression (Li, Liu, Feng, 
et al., 2022). PPARG regulates alveolar macrophage (AM) 
functions. AMs express a very high level of PPARG mRNA 
and protein (Reddy et al.,  2004), neutrophil and eosino-
phil functions (Kintscher et al.,  2000; Ueki et al.,  2004), 
and allergic airway inflammation (Trifilieff et al.,  2003). 
Thus, the reversed profile of Nfe2l2 expression and the 
loss of diurnal variation in Pparg expression might pro-
voke pro-inflammatory and dysregulating processes in the 
lungs of RF mice.

A remarkable increase was observed in the midnight 
and noon expression of Nfe2l2 and Cxcl5 mRNA with 

pro-inflammatory properties. NFκB axis has great impor-
tance for lung immunometabolism and injury (Mahung 
et al.,  2022; Soto et al.,  2020; Tang et al.,  2018). NFκB 
through TNF-alpha can stimulate cells to upregulate sev-
eral pro-inflammatory mediators such as neutrophilic 
chemokine CXCL5 (Kuret et al.,  2022). Diurnal expres-
sion of CXCL5 was found in club cells, and this expres-
sion was regulated by the circadian rhythm. Elevated 
expression of CXCL5 due to the deletion of BMAL allevi-
ated LPS-induced inflammation (Gibbs et al., 2009). Such 
abrogation of BMAL activity decreases the resistance to 
respiratory viral infections, advantages the viral entry and 
replication, and promotes injury of bronchoalveolar epi-
thelium and mucus production (Ehlers et al., 2018).

In our investigation, the RF led to the increase in total 
cells, macrophages, and lymphocyte count in BAL at mid-
night and neutrophil count at noon, accompanied by a 
significant increase in vascular congestion and cellular 
infiltrates in mouse lungs. These findings went in parallel 
with the enhanced expression of Rela and Cxcl5 mRNA. 
Elevated BAL cellularity was accompanied by a statisti-
cally significant increase in IL-6, TNF-alpha, and TGF-
beta 1 at midnight and noon.

Taken together, our findings suggest that RF causes 
the disturbance of male mouse lung diurnal expression 
of core clock genes, accompanied by the elevation of Rela 
and Cxcl5 mRNAs and diminution of Nfe2l2 and Pparg 
mRNAs. These impaired gene regulations increase low-
grade inflammation and possible metabolic disorders in 
lung tissue.

We investigated the ability of PZ to influence the 
mRNAs level of core clock genes and inflammation- 
and metabolism-related gene disturbance by RF in 
mouse lungs. The influence of PZ and rosiglitazone 
on the clock gene expression was shown recently for 
mouse liver and kidney tissue (Fedchenko et al., 2022;  
Izmailova et al., 2022; Ribas-Latre et al., 2019). New data 
were obtained about the role of PPARs and PPARG in lung 
chronobiology and chronotherapy (Nosal et al.,  2020; 
Paudel et al.,  2021; Sundar et al.,  2018). Moreover, 
PPARG agonists have a therapeutic potential for pulmo-
nary diseases as a modulator of inflammation induced 
by different stimuli, including bacteria and viruses  
(Carvalho et al., 2021).

We investigated the efficacy of PPARG agonist PZ 
administration at two time points—7 a.m. and 7 p.m. 
PZ administration at 7 a.m. did not affect diurnal core 
genes' expressions significantly as well as the levels of 
inflammation- and metabolism-related genes mRNAs 
in RF mice. We also observed only a decrease in BAL 
neutrophil count and IL-6, TNF-alpha, and TGF-beta 1 
levels without statistically significant influence on lung 
morphology.
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PZ treatment at 7 p.m. led to the restoration of diur-
nal expression of clock genes, including Nr1d1. REV-
ERB alpha is the product of Nr1d1 and operates as one 
of the most important repressors of circadian regulation 
loops. REV-ERB alpha interacts with specific DNA sites 
into clock gene sequences as well as other metabolism- 
and inflammation-related genes, the patterns of these 
interactions are specific for different tissues (Butler & 
Burris,  2015; Zhang et al.,  2015). REV-ERB alpha might 
possess as a target for new therapies in chronic airway 
pathologies (Kojetin & Burris, 2014; Solt et al., 2012). Re-
cent results have shown that REV-ERB alpha might be in-
duced by PPARG activation and controlled NFκB-driven 
pro-inflammatory genes, for example, IL-6 (Laitinen 
et al., 2005).

In parallel to these data, PZ treatment at 7 p.m. induced 
Nfe2l2 and Pparg and decreased Rela and Cxcl5 expressions. 
Nfe2l2 and Pparg have a functional agonism in the regula-
tion of inflammation and metabolism. Moreover, PPARG 
regulates NRF2 activation (Gao et al., 2018; Li, Peng, Feng, 
et al., 2022), and the two factors inhibit NFκB-mediated 

inflammation (Chen & Maltagliati,  2018). Inhibition of 
Rela might decrease Cxcl5 expressions because Cxcl5 is the 
direct NFκB target gene (Guan et al., 2016).

At the same time, PZ treatment at 7 p.m. decreases cell 
influx in BAL—macrophages and lymphocytes at differ-
ent time points as well as IL-6, TNF-alpha, and TGF-beta 
1. During the inflammation, PPARG alleviates the activa-
tion and DNA-binding activity of NFκB due to the repres-
sion of IκB-alpha degradation. This repression is achieved 
by the activation of the IκB kinase or by the interaction 
of PPARG with the NFκB p50/NFκB p65 dimer (Zhang, 
Hu, et al., 2014; Zhu et al., 2016). Usually, between NFκB-
driven cytokines (IL-6 and TNF-alpha) and the TGF-beta 
1/Smad pathway, there is an antagonistic interaction but 
some dysfunctions might occur (Garg et al., 2022). There-
fore, this observation needs further special investigation.

In Figure  7, we summarized our findings and sug-
gested the PZ activity during RF. In brief, RF disrupted the 
diurnal pattern of the core clock gene and inflammation- /​
metabolism-related gene expression with enhancement 
of the NFκB pathway. PZ administration increased the 

F I G U R E  7   Light–dark changes are received by special light-sensitive receptors in the retina and induced inputs to SCN, which 
acted as a central pacemaker of the circadian clock. In route SCN generals neurohumoral outputs to the tissue-specific peripheral clocks 
(Dibner et al., 2010). A circle shows the core and stabilization loops of the core circadian oscillator. Tissue-specific circadian transcription 
is regulated by REV-ERB and retinoic acid receptor-related orphan receptors (RORs), which interacted with specific response elements of 
the clock (including Arntl) and clock-controlled genes. Peripheral oscillators might have taken away from the SCN control and developed 
peripheral rhythm due to eating or fasting (Damiola et al., 2000; Kim et al., 2022). RF induced the diurnal disruption of the core clock gene 
and inflammation-/metabolism-related gene expression pattern. Impaired gene expression increased the activity of the NFκB pathway and 
decreased NRF2/PPARG. PZ activated PPARG with consequent suppression of the NFκB pathway and decreased concentration of pro-
inflammatory cytokines IL-6, TNF-alpha, and cell influx in BAL.
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expression of Nfe2l2 and Pparg mRNA and alleviated the 
level of IL-6, TNF-alpha, and cell influx in BAL.

By using the same model of RF and PZ administration 
in male mice, we can compare the effects of such interven-
tions in the three metabolic active organs—liver, kidney, 
and lung (Fedchenko et al., 2022; Izmailova et al., 2022).

RF induced a tissue-unspecific disruption of the cir-
cadian expression pattern of core clock genes decreasing 
Per1, Per2, Cry1, Cry2, Clock, and Arntl with increased 
Nr1d1 mRNAs at midnight. In contrast, we observed the 
differences in Cxcl5 mRNA expression in mouse liver and 
lung tissue. RF induced a significant reduction in Cxcl5 
mRNA at midnight and noon.

PZ had a similar tissue-unspecific effect, repaired 
the diurnal clock gene expression, and alleviated pro-
inflammatory factors as well as increased anti-inflammatory 
potency with the maximum activity at 7 p.m. versus 7 a.m.

This study might be limited by the extra lung effects of 
RF and PZ. The duration of the recent animal model might 
be insufficient to develop more significant changes in lung 
tissue. Additional investigations are needed into TGF-
beta1-related processes and mucus production during RF 
and PZ treatment are needed. Clock gene expression was 
analyzed in lung tissue homogenates. The changes in the 
cellular composition in lung tissue (e.g., recruitment of in-
flammatory cells, as shown) may affect the values for total 
clock gene expression in the tissue.

Further studies are needed to investigate chronic air-
way diseases and their interactions with the lung periph-
eral clock as well as the therapeutic potency of PPARG 
agonists. Additional experiments are needed with several 
time points (not only noon and midnight) to estimate cir-
cadian parameters (amplitude, MESOR, or phase) as well 
as with a model of prolongated (14 and more days) RF.

5   |   CONCLUSIONS

We concluded that the RF disrupted the lung diurnal ex-
pression of core clock genes, alleviating Nfe2l2 and Pparg, 
and exaggerating Rela and Cxcl5 expression accompanied 
by the elevation of IL-6, TNF-alpha concentrations as well 
as cellularity in BAL.

PZ treatment repaired the diurnal clock gene expres-
sion, increased Nfe2l2 and Pparg mRNAs, and alleviated 
Rela, Cxcl5 mRNAs, and IL-6, TNF-alpha, and cellularity 
in BAL. PZ treatment had a significantly higher chrono-
pharmacological activity at 7 p.m. than at 7 a.m.
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